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Note 

Plasma Equilibrium Calculations by 
Line Successive over Relaxation 

I. INTRODUCTION 

Line successive over relaxation (LSOR) is an iterative method for solving elliptic 
differential equations [ 11. LSOR takes advantage of the CRAY vector capabilities as 
compared to the point successive over relaxation (SOR) method, which does not 
vectorize. The substantial advantages of LSOR on a vectorizing machine are not well 
known, except in the field of aerodynamics 12, 31. By minor modification of the 
traditional SOR elliptic equation solver, we find that in certain coordinates an 
increase of a factor of two or greater in convergence time can be realized. 

As a model problem for comparison of SOR and LSOR, the numerical solution of 
Poisson’s equation will be reviewed in Section II. In Section III, we discuss the 
decreased computation time on the National Magnetic Fusion Energy Computer 
Center (NMFECC) CRAY computers found with LSOR applied to the iterative 
solution of plasma equilibria. In Section IV, the conditions for which LSOR is most 
useful are summarized. 

II. SOLUTION OF POISSON’S EQUATION BY SOR AND LSOR 

Centered finite differencing of Poisson’s equation 

V2P=S. 

for a 10 x 10 cylindrical [r(i), 0(j)] grid leads to 

36(r2’+ 1) [pi+l,j-pi-l.,jl + 2~~2~~ 1) [Pi+I.j+Pi-I,jl 

1 
+ 2(r2 + 1) Ipi,j+l + pi,j-l 1 -‘ij= ,,,s):ri 1>. 

In the SOR technique, the nth iteration of P is calculated from 

(1) 

(2) 

P$=P;-'+ mRij. 
3.51 

(3) 
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Here the residual R(i,j) is 

R, = 

(4) 

Varying the SOR parameter w optimizes convergence time. 
In the LSOR [4] method, we write the set of finite differenced equations for all 

points on the (i,j) grid in matrix form 

(5) 

Here P = (P, , P, ,...) and each vector Pj represents a whole row of grid points. Each 
row Pj can be found from 

via a tridiagonal matrix inversion. The vector Pf is used to increment the (n - 1)th 
vector Pj”- I, 

(7) 

The point SOR method uses the advanced (k + 1) values at two neighboring points 
(i - 1,j) and (i,j- 1). Line SOR uses the advanced (k + 1) values at three 
neighboring points and so slightly improves the convergence rate on a scalar 
computer [ 41. 

To compare the speed of SOR and LSOR on a vectorizing computer, solutions of 
Poisson’s equation with a nonlinear source 

V ‘P = P2 exp(P’), (8) 

were obtained in a cylindrical geometry with cyclic boundary conditions. The 
equation was solved with tridiagonal solution for rows at constant radius and also for 
rows at constant 0 (Fig. 1). It was found that LSOR with tridiagonal solution along 8 
(at constant radius) was fastest. This converged ten times faster than SOR when 
sweeping radial grid points at constant 8. These conclusions also hold for a 
stationary linear source. 

In both cylindrical and rectangular coordinates LSOR was significantly faster than 
SOR for computations requiring many iterations. In cylindrical coordinates, with an 
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FIG. I. Cpu convergence time to solve Poisson’s equation by LSOR and SOR methods as a 
function of over relaxation parameter w. For LSOR-R and SOR-R the tridiagonal solution is obtained 
at constant 8. For LSOR-0 and SOR-8 the tridiagonal solution is obtained at constant radius. 

error criterion requiring at least 400 SOR iterations for convergence, LSOR was 
much faster than SOR (Fig. 1). LSOR and SOR were found to be equally fast when 
only ten SOR iterations were needed. Imposed up-down symmetry would further 
speed LSOR convergence. The LSOR method of solving Poisson’s equation 
converges fastest when the solution is slowly varying in the direction along which the 
tridiagonal solution is found. The problem is thereby quickly reduced to quasi-one- 
dimensional. 
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III. SOR AND LSOR SOLUTIONS OF PLASMA EQUILIBRIA 

Replacing SOR and LSOR in the Princeton equilibrium code EQ accelerates 
convergence for a typical plasma fixed boundary equilibrium. EQ solves the Grad- 
Shafranov equation [5, 6] for the poloidal flux function x which is derived from the 
equilibrium force balance between the magnetic and kinetic pressure in tokamak 
plasmas. This equation has a nonlinear source since the pressure and toroidal field 
functions are dependent on x. 

The equation is solved in magnetic flux coordinates by the method of DeLucia, 
Jardin, and Todd [7]. The equation is solved by iteration for the poloidal flux 
function. This is used to compute a new magnetic coordinate system via the Jacobian 
constraint as well as by matching the total measured current and central plasma 
pressure. Then the Grad-Shafranov equation is solved again in the new coordinate 

FIG. 2. Computational (CPU) convergence time for EQ for a JET simulation for SOR and LSOR as 
a function of relaxation parameter w. 
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system. The coordinate readjustment and the iterative Grad-Shafranov solution 
continue until the error criterion is no longer exceeded. 

In EQ, the equilibrium solution is obtained in a nonorthogonal cylindrical 
geometry (8, r) in the poloidal plane. The convergence time required for EQ with 
SOR was the same whether 0 or r is the direction of successive sweeps. However, the 
convergence time for EQ with LSOR is about three times faster for tridiagonal 
solutions along 0 rather than along r for a typical poloidal divertor experiment 
(PDX) plasma simulation. 

Figure 2 presents the total cpu time required for convergence of EQ as a function 
of the relaxation parameter. The results of SOR and LSOR calculations are shown 
for a joint European torus (JET) simulation. We find that optimized LSOR reduces 
cpu time required for convergence. The LSOR JET simulation convergence is faster 
than SOR by a factor of four, while a LSOR PDX simulation (not shown) converged 
faster by a factor of two. The JET simulation represents a noncircular, low aspect 
ratio, high current plasma. This is an equilibrium with steeper gradients, a more 
nonlinear grid and requires a more time-consuming calculation. For this case LSOR 
is faster than SOR at all values of w. 

Another approach to obtaining a fast accurate two-dimensional plasma MHD 
equilibrium is that of Lao, Hirshman, and Wieland [8]. They developed a variational 
moments method which takes about 0.2 set of CRAY time to compute an equilibrium 
with a relative error of 1O-3 for three amplitude functions. For a circular PDX-type 
simulation, EQ with SOR iteration and error criterion 

Maxij/y/“-~n-‘/ < 1o-5 

(lW"l>ij ' ' 

converges in 9 set of CRAY tme for 80 poloidal points and imposed up-down 
symmetry. The toroidal flux function is v/. EQ with LSOR obtains the same solution 
in 4.5 set for this fixed boundary case. 

The LSOR-modified EQ code runs more quickly than EQ with SOR. It is poten- 
tially more accurate than the Lao-Hirshman-Wieland moments code for high beta 
equilibria having steep gradients, since it computes with all Fourier amplitude 
functions. When the distortion of flux surfaces is not large, the Lao-Hirshman- 
Wieland code will be faster. 

IV. CONCLUSION 

On scalar computing machines, LSOR is only slightly faster than SOR [9]. LSOR 
converges in fewer iterations than point SOR but each iteration may take longer 
because of the implicit tridiagonal solution required. SOR is an adequate iterative 
method for solution of elliptic equations when the problem (a) has no axis of 
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symmetry, (b) does not require a great many iterations, or (c) must be solved on a 
scalar computer. On a vectorizing machine problems requiring many iterations of a 
nonlinear eliptic equation can often be solved faster by LSOR. 
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